Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of carbon dioxide absorption using aqueous monoethanolamine, piperazine and promoted potassium carbonate

    Thumbnail
    Date
    2012-05
    Author
    Plaza, Jorge Mario
    Metadata
    Show full item record
    Abstract
    Rigorous CO₂ absorption models were developed for aqueous 4.5 m K+/4.5 m PZ, monoethanolamine (7m - 9m), and piperazine (8m) in Aspen Plus® RateSepTM. The 4.5 m K+/4.5 m PZ model uses the Hilliard thermodynamic representation and kinetics based on work by Chen. The MEA (Phoenix) and PZ (5deMayo) models incorporate new data for partial pressure of CO₂ vs. loading and kinetics from wetted wall column data. They use reduced reaction sets based on the more relevant species present at the expected operating loading. Kinetics were regressed to match reported carbon dioxide flux data using a wetted wall column (WWC). Density and viscosity were satisfactorily regressed to match newly obtained experimental data. The activity coefficient of CO₂ was also regressed to include newly obtained CO₂ solvent solubility data. The models were reconciled and validated using pilot plant data obtained from five campaigns conducted at the Pickle Research Center. Performance was matched within 10% of NTU for most runs. Temperature profiles are adequately represented in all campaigns. The calculated temperature profiles showed the effect of the L/G on the location and magnitude of the temperature bulge. As the L/G is increased the temperature bulge moves from near the top of the column towards the bottom and its magnitude decreases. Performance improvement due to intercooling was validated across the campaigns that evaluated this process option. Absorber intercooling was studied using various solvent rates (Lmin, 1.1 Lmin and 1.2 Lmin). It is most effective at the critical L/G where the temperature bulge without intercooling is in the middle of the column. In this case it will allow for higher absorption by reducing the magnitude of the bulge temperature. The volume of packing to get 90% removal with L/Lmin =1.1 at the critical L/G is reduced by 30% for 8m PZ. For MEA and a solvent flow rate of 1.1 Lmin packing volume is increased with intercooling at constant L/G. This increase is compensated by higher solvent loadings that suggest lower stripping energy requirements. The critical L/G is 4.3 for 8m PZ, 6.9 for 9m MEA and 4.1 for K+/PZ.
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-4952
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV