Manipulating fluorescence dynamics in semiconductor quantum dots and metal nanostructures

Date

2011-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Recent scientific progress has resulted in the development of sophisticated hybrid nanostructures composed of semiconductor and metal nanoparticles. These hybrid structures promise to produce a new generation of nanoscale optoelectronic devices that combine the best attributes of each component material. The optical response of metal nanostructures is dominated by surface plasmon resonances which create large local electromagnetic field enhancements. When coupled to surrounding semiconductor components, the enhanced local fields result in strong absorption/emission, optical gain, and nonlinear effects. Although hybrid nanostructures are poised to be utilized in a variety of applications, serious hurdles for the design of new devices remain. These difficulties largely result from a poor understanding of how the structural components interact at the nanoscale. The interactions strongly depend on the exact composition and geometry of the structure, and therefore, a quantitative comparison between theory and experiment is often difficult to achieve.

Colloidal semiconductor quantum dots are strong candidates for integration with metal nanostructures because they have a variety of desirable optical properties, such as tunable emission and long term photostability. However, one potential drawback of colloidal quantum dots is the intermittency in their fluorescence (commonly referred to as “blinking”). Blinking was first observed over a decade ago, yet there is still no complete theory to explain why it occurs. In spite of the lack of a full theoretical explanation, multiple methods have been used to reduce blinking behavior, including modifying quantum dot interfaces and coupling quantum dots with metal nanostructures.

This thesis focuses on studying the coupling between colloidal quantum dots and metal nanoparticles in simple model systems. Atomic force microscopy nanomanipulation is used to assemble the hybrid structures with a controlled geometry. The experimental studies report for the first time the modified fluorescence decay, emission intensity, and blinking of a single quantum dot coupled to a single Au nanoparticle. Since the geometry of the structure is known, these studies provide reliable information on the interparticle coupling, and quantitative experimental results are shown to be consistent with classical electrodynamic theories.

Description

text

Citation