Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational analysis of meditation

    Thumbnail
    Date
    2011-08
    Author
    Saggar, Manish
    Metadata
    Show full item record
    Abstract
    Meditation training has been shown to improve attention and emotion regulation. However, the mechanisms responsible for these effects are largely unknown. In order to make further progress, a rigorous interdisciplinary approach that combines both empirical and theoretical experiments is required. This dissertation uses such an approach to analyze electroencephalogram (EEG) data collected during two three-month long intensive meditation retreats in four steps. First, novel tools were developed for preprocessing the EEG data. These tools helped remove ocular artifacts, muscular artifacts, and interference from power lines in a semi-automatic fashion. Second, in order to identify the cortical correlates of meditation, longitudinal changes in the cortical activity were measured using spectral analysis. Three main longitudinal changes were observed in the retreat participants: (1) reduced individual alpha frequency after training, similar reduction has been consistently found in experienced meditators; (2) reduced alpha-band power in the midline frontal region, which correlated with improved vigilance performance; and (3) reduced beta-band power in the parietal-occipital regions, which correlated with daily time spent in meditation and enhanced self-reported psychological well-being. Third, a formal computational model was developed to provide a concrete and testable theory about the underlying mechanisms. Four theoretical experiments were run, which showed, (1) reduced intrathalamic gain after training, suggesting enhanced alertness; (2) increased cortico-thalamic delay, which strongly correlated with the reduction in individual alpha frequency (found during spectral analysis); (3) reduction in intrathalamic gain provided increased stability to the brain; and (4) anterior-posterior division in the modeled reticular nucleus of the thalamus (TRN) layer and increased connectivity in the posterior region of TRN after training. Fourth, correlation analysis was performed to ground the changes in cortical activity and model parameters into changes in behavior and self-reported psychological functions. Through these four steps, a concrete theory of the mechanisms underlying focused-attention meditation was constructed. This theory provides both mechanistic and teleological reasoning behind the changes observed during meditation training. The theory further leads to several predictions, including the possibility that customized meditation techniques can be used to treat patients suffering from neurodevelopmental disorders and epilepsy. Lastly, the dissertation attempts to link the theory to the long-held views that meditation improves awareness, attention, stability, and psychological well-being.
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-08-3964
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV