Persistent and transient Na⁺ currents in hippocampal CA1 pyramidal neurons

Date

2011-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The biophysical properties and distribution of voltage gated ion channels shape the spatio-temporal pattern of synaptic inputs and determine the input-output properties of the neuron. Of the various voltage-gated ion channels, persistent Na⁺ current (INaP) is of interest because of its activation near rest, slow inactivation kinetics, and consequent effects on excitability. Overshadowed by transient Na⁺ current (INaT) of large amplitude and fast inactivation, various quantitative characterizations of INaP have yet to provide a clear understanding of their role in neuronal excitability. We addressed this question using quantitative electrophysiology to compare somatic INaP and INaT in 4–7 week old Sprague-Dawley rat hippocampal CA1 pyramidal neurons. INaP was evoked with 0.4 mV/ms ramp voltage commands and INaT with step commands in hippocampal neurons from in vitro brain slices utilizing nucleated patch-clamp recording. INaP was found to have a density of 1.4 ± 0.7 pA/pF in the soma. Compared to INaT, it has a much smaller amplitude (2.38% of INaT) and distinct voltage dependence of activation (16.7 mV lower half maximal activation voltage and 41.3% smaller slope factor than those of INaT). The quantitative measurement of INaT gave the activation time constant ([tau]m) of 22.2 ± 2.3 [mu]s at 40 mV. Hexanol, which has anesthetic effects, was shown to preferentially block INaP compared to INaT with a significant voltage threshold elevation (4.6 ± 0.7 mV) and delayed 1st spike latency (221 ± 54.6 ms) suggesting reduced neuronal excitability. The number of spikes evoked by either given step current injections or [alpha]-EPSP integration was also significantly decreased. The differential blocking of INaP by halothane, a popularly used volatile anesthetic, further supports the critical role of INaP in setting voltage threshold. Taken together, the presence of INaP in the soma demonstrates an intrinsic mechanism utilized by hippocampal CA1 pyramidal neurons to regulate axonal spike initiation through different biophysical properties of the Na⁺ channel. Furthermore, INaP becomes an interesting target of intrinsic plasticity because of its profound effect on the input-output function of the neuron.

Description

text

Citation