Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polar analyte effects on charge transport and trapping In organic field effect transistor based chemical and vapor sensors

    Thumbnail
    Date
    2011-05
    Author
    Duarte, Davianne A.
    Metadata
    Show full item record
    Abstract
    Organic thin film transistors (TFTs) based on the field effect transistor architecture provide a methodology for sensing by exhibiting a change in the transport properties such as shifts in mobility, threshold voltage and conductivity. Chemical recognition is achievable by various methods including the two processes, which we are studying, direct analyte interactions with the semiconductor and specific receptor molecules on the semiconducting surface. Previous work demonstrates the effects of carrier concentration, grain size (surface morphology), and channel length on the sensing response to analytes such as alcohols, which exhibit a moderate dipole moment. When the alcohol interacts with the organic channel the addition of a trap and a positive charge occurs at the grain boundaries. At low carrier concentrations the added charge has the effect of producing an increase in current for the sensing response. At higher carrier concentrations the occurrence of trapping overwhelms the effect of the positive charge and you see and reduction in current. Typically the mobility shifts, which occur during sensing are correlated with trapping for polar analytes. The magnitude of the mobility decreases are dependent on the dipole moment of the polar analyte. Another aspect of organic materials is the fine-tuning of the chemical sensitivity by modifying the surface with receptor sites to increase the partition coefficient. In our study we pull the polarization, molecular dipole moment, transport and trapping, and partition coefficient concepts together to produce a model, which describes how an OFET based sensor interacts with an analyte with and without receptor molecules and under aqueous conditions.
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-05-3268
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV