Controls on and uses of hydrochemical and isotopic heterogeneity in the plateau aquifer system, contiguous aquifers, and associated surface water, Edwards Plateau region, Texas

Date

2010-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Groundwater and surface water in the Edwards Plateau region exhibits spatial variability arising from mineral differences in aquifers and mixing of groundwaters with diverse flow paths and ages. Integration of basic hydrochemical and isotope data (⁸⁷Sr/⁸⁶Sr, [delta]¹⁸O, [delta]D, ¹⁴C, ³H) document that groundwaters in the Lower Cretaceous Edwards-Trinity (Plateau) aquifer system reflect intermixing of modern and Pleistocene recharge. Pleistocene recharge occurred under cooler paleo-climatic conditions, based on [delta]¹⁸O variance of 4.59%, and flow traversed sub-cropping Permian evaporite and Triassic strata under hydraulic conditions that promoted upward flow into the Plateau system. Recharge areas may have been in topographically elevated areas in New Mexico that no longer are connected with the Plateau. Present distribution of groundwaters with higher SO₄/Cl values occurring beneath topographic divides on the Plateau suggests that modern recharge occurs preferentially in losing-stream networks and is inhibited on divides by low-permeability soils. Relationships between ¹⁴C, tritium, [delta]¹³C, and Mg/Ca values confirm that effectively younger groundwaters occur beneath the upper parts of drainage networks, but down slope of divides. Thus, groundwater-age and hydrochemical data suggest that recharge preferentially occurs in the upper parts of drainage networks. Correlations between groundwater relative age and Mg/Ca enable estimation of the proportion of modern recharge at specific well locations based on Mg/Ca values and enables estimating local absolute recharge rates from regional-scale recharge estimates obtained from regional flow models. The Upper Colorado River bounds the northern and northeastern margin of the Plateau system and shows systematic chemical evolution along its flow path, including decreasing salinity and increasing SO₄/Cl values. The stream can be conceptually divided into three segments that each reflect groundwater inputs from five hydrochemically distinct intervals: 1) deep Permian and Pennsylvanian reservoirs similar to those that produce hydrocarbons in the region; 2) Upper Permian halite (Salado Formation); 3) the Triassic siliciclastic aquifer (Dockum Group); 4) the sulfate-evaporite-bearing Permian system (Ochoan, Guadalupian, and Leonardian Series); and 5) the Plateau aquifer system. Conservative mixing models suggest that any aquifer that the river is traversing at a specific location contributes a distinct hydrochemical signature, but the dominant contribution is from the Plateau system.

Description

text

Citation