Mobile computing in a clouded environment

Date

2009-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Cloud Computing has started to become a viable option for computing centers and mobile consumers seeking to reduce cost overhead, power consumption, and increase software services available within their platform. For instance distributed memory constrained mobile devices can expand their ability to share real time data by utilizing virtual memory located within the cloud. Cloud memory services can be configured to restrict read and write access to the shared memory pool on a partner by partner basis. Utilization of such resources in turn reduces hardware requirements on mobile devices while lessening power consumption for each physical resource. Within the Cloud Computing paradigm, computing resources are provisioned to consumers on demand and guaranteed through service level agreements. Although the idea of a computing utility is not new, its realization has come to pass as researchers and corporate companies embark on a journey of implementing highly scalable cloud environments. As new solutions and architectures are proposed, additional use cases and consumer concerns have been revealed. These issues range from consumer security, adequate service level agreements and vendor interoperability, to cloud technology standardizations. Further, the current state of the art does not adequately address these needs for mobile consumers, where services need to be guaranteed even as consumers dynamically change locations. Due to the rapid adoption of virtualization stacks and the dramatic increase of mobile computing devices, cloud providers must be able to handle logical and physical mobility of consumers. As consumers move throughout geographical regions, there exists the probability that a consumer’s new locale may hinder a producer’s ability to uphold service level agreements. This inability is due to the fact that a producer may not have physical resources located relatively close to a mobile consumer’s new locale. As a consequence, producers must either continue to provide degraded resource consumption or migrate workloads to third party producers in order to ensure service level agreements are maintained. The goal of this report is to research existing architectures that provide the ability to adequately uphold service level agreements as mobile consumers move from locale to locale. Further we propose an architecture that can be implemented along with existing solutions in order to ensure consumers receive adequate service levels regardless of locality. We believe this architecture will lead to increased cloud interoperability and decreased consumer to producer platform coupling.

Description

text

Citation