Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design provisions for autoclaved aerated concrete (AAC) infilled steel moment frames

    Thumbnail
    Date
    2009-12
    Author
    Ravichandran, Shiv Shanker
    Metadata
    Show full item record
    Abstract
    In this dissertation, the seismic behavior and design of AAC-infilled steel moment frames are investigated systematically. The fundamental vehicle for this investigation is the ATC-63 methodology, which is intended for the establishment of seismic design factors for structural systems. The ATC-63 methodology is briefly reviewed, including the concepts of archetypical structures, design rules and mathematical models simulating the behavior of those archetypes. A limited experimental investigation on the hysteretic behavior of an AAC-infilled steel moment frame is developed, conducted, and discussed. Using the experimental results of that investigation, the draft infill design provisions of the Masonry Standards Joint Committee (MSJC) are extended to AAC infills, and a mathematical model is developed and calibrated to simulate the behavior of AAC infills under reversed cyclic loads. Prior to application of ATC-63 methodology to AAC-infilled steel moment frames, the methodology is applied to an example steel moment frame to demonstrate the methodology and verify understanding of it. Then, archetypical infilled frames to be evaluated by the ATC-63 methodology are developed using a series of pushover analyses. Infill configurations whose total lateral strength in a particular story exceeds about 35% of the lateral strength of the bare frame in that story are observed to provoke story mechanisms in the frame. Based on this observation, archetypical infilled frames are selected conforming to two infill configurations: uniformly infilled frames, and open ground story frames. Each infill configuration includes archetypes whose ratio of infill strength to bare-frame strength at each story is less than 35%, and archetypes whose ratio is greater than 35%. The former archetype is typical of steel moment frames infilled with AAC; the latter archetype is typical of steel moment frames infilled with conventional (clay or concrete) masonry. The ATC-63 methodology, specialized for application to infilled frames, is applied to the archetypical infilled frames developed above. The performance of those archetypical infilled frames is evaluated, and seismic design factors are proposed for AAC-infilled steel moment frames. The extension of this work to other types of infilled frames is discussed.
    URI
    http://hdl.handle.net/2152/7529
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV