Constraining fundamental physics with cosmology

Date

2009-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

It is shown in three examples that future cosmological data may allow us to constrain fundamental physics in interesting ways. The first example illustrates that correlations in the polarization of the cosmic microwave background may allow us to put the strongest limit yet on the mass of a particle, the graviton, at a level of m . 10−30 eV. In the second example, it is shown that observations of the correlations of temperature anisotropies and polarization of the cosmic microwave background may reveal hints for the realization of a class of string theoretic inflationary models that go by the name of axion monodromy inflation, or, rule them out. If the evidence for inflation strengthens substantially, just the requirement that inflation occurred may be used to constrain models of fundamental physics. The third example shows that a class of string compactifications that are commonly used in the context of string phenomenology cannot support inflation and might thus be ruled out by cosmology. For completeness, a review of the physics underlying the cosmic microwave background radiation is included and some analytical results for the signatures of primordial gravitational waves in the cosmic microwave background are given.

Description

text

Citation