Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Risk reduction in the manufacturing of interference fits for laminated rotating cores of electrical machines

    Thumbnail
    Date
    2007-08
    Author
    Lewis, Michael Christopher
    Metadata
    Show full item record
    Abstract
    Electric drive systems are becoming increasingly popular in all areas from personal automobiles to naval ships. Electric motors and generators are being pushed to higher power and energy densities. The increase in power and energy results in increased rotor speeds, placing more importance on the interference fit between the rotor core and its shaft. Traditional manufacturing methods for rotor cores, such as thermal fits or keying, typically fall short of the interference fit requirements of the rotor or present undesirable manufacturing conditions. The more common methods used for motors are also inherently risky operations that are irreversible. This thesis examines how a hydraulic expansion fit provides a solution to the traditional manufacturing problems of interference fits for laminated rotating cores of electrical machines. Hydraulic expansion fits have been implemented successfully in the coupling industry for several years; however, their application to rotating cores of electrical machines is a novel approach that is beneficial in many respects. The hydraulic expansion fit is a robust manufacturing technique capable of large interference fit pressures. It can be controlled and monitored during installation, thereby reducing manufacturing risks. Additionally, the rotor can be removed after installation using the hydraulic expansion methods. The paper outlines traditional methods and details the design issues associated with a hydraulic expansion fit for a laminated motor core. In addition, the installation method is implemented on a prototype induction motor rotor core and documented measurements from an installation are presented.
    URI
    http://hdl.handle.net/2152/46565
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV