Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of restrictive diffusion on hydrate growth

    Thumbnail
    Date
    2016-05
    Author
    Andris, Ryan Gerald
    0000-0002-0972-2929
    Metadata
    Show full item record
    Abstract
    Methane hydrate is formed naturally in a number of geologic settings around the world. The most predominant methane hydrate reservoirs are found in shallow oceanic basins at low temperatures and high pressures. A widely observed phenomenon in these oceanic sequences is extensive fine-grained sediments containing little to no hydrate interbedded with highly saturated sand bodies (20-60%). At Walker Ridge Block 313 in the Gulf of Mexico, one particular coarse-grained bed (approximately 3m-thick) is estimated to have methane hydrate occupying as much as 60% of the available pore space surrounded by hydrate-free clay. Here, I develop a numerical model that simulates methane hydrate growth in shallow oceanic basins in order to test whether diffusive transport of methane is a viable transport mechanism for forming highly saturated sand layers. I conclude that methane diffusion is likely responsible for the key identifying features of hydrate formation in interbedded sands and shales (i.e. greater hydrate saturations at the sand boundaries surrounded by hydrate-free zones in the fine-grained matrix). In addition, I show that the key parameters affecting the hydrate saturation profile include the amount of available methane for hydrate growth, thickness of the sand layer, and the radius of the fine grained pore space. I also discuss the shortcomings of the developed model and what complexities need to be added to more accurately reproduce hydrate growth throughout intricate hydrogeologic systems.
    URI
    http://hdl.handle.net/2152/39166
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV