Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    How does uncertainty influence spatial projections of Anopheles presence in Kenya?

    Thumbnail
    Date
    2016-05
    Author
    Ames, Jillian Elizabeth
    0000-0002-4667-126X
    Metadata
    Show full item record
    Abstract
    Species distribution models (SDM) are becoming a widely used framework for studying distribution and risk of vector-borne diseases, particularly as a consequence of climate change (Gonzalez et al. 2010; Porretta et al. 2013; Rochlin et al. 2013). Malaria has been one of the most extensively studied vector-borne diseases (Minakawa et al. 2005; Ryan et al. 2006; Afrane et al. 2008; Mboera et al. 2010; Nath et al. 2012), and SDM output has been used by policy makers and various aid organizations to design and implement preventative malaria programs for areas that have been identified as current or future high risk (Gething et al. 2012; Hongoh et al. 2012; Cianci et al. 2015). However, these maps and models are often developed by epidemiologists or other medical researchers and therefore issues related to representing or exploring the uncertainty in the results have often been ignored (Lindsay et al. 1998; Levine et al. 2004). Many sources of uncertainty in model outputs have been identified in SDM research, ranging from data type or measurement level (e.g., presence-only vs. presence-absence, abundance), to statistical method, to subjective decisions related to mapping the results (e.g., threshold selected to discretize continuous output). This studies employs SDM to project the spatial distribution of four species of Anopheles (malaria-carrying mosquitoes) in Kenya, focusing on the representation of uncertainty and its propagation associated with aspects of the modeling methods and the data used.
    URI
    http://hdl.handle.net/2152/38767
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV