Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-volatile memory devices beyond process-scaled planar Flash technology

    Thumbnail
    Date
    2007-12
    Author
    Sarkar, Joy, 1977-
    Metadata
    Show full item record
    Abstract
    Mainstream non-volatile memory technology dominated by the planar Flash transistor with continuous floating-gate has been historically improved in density and performance primarily by means of process scaling, but is currently faced with significant hindrances to its future scaling due to fundamental constraints of electrostatics and reliability. This dissertation is based on exploring two pathways for circumventing scaling limitations of the state-of-the-art Flash memory technology. The first part of the dissertation is based on demonstrating a vertical Flash memory transistor with nanocrystal floating-gate, while the second part is based on developing fundamental understanding of the operation of Phase Change Memory. A vertical Flash transistor can allow the theoretical minimum cell area and a nanocrystal floating-gate on the sidewalls is shown to allow a thinner gate-stack further conducive to scaling while still providing good reliability. Subsequently, the application of a technique of protein-mediated assembly of preformed nanocrystals to the sidewalls of the vertical Flash transistor is also demonstrated and characterized. This technique of ordering pre-formed nanocrystals is beneficial towards achieving reproducible nanocrystal size uniformity and ordering especially in a highly scaled vertical Flash cell, rendering it more amenable to scaling and manufacturability. In both forms, the vertical Flash memory cell is shown to have good electrical characteristics and reliability for the viability of this cell design and implementation. In the remaining part of this dissertation, studies are undertaken towards developing fundamental understanding of the operational characteristics of Phase Change Memory (PCM) technology that is expected to replace floating-gate Flash technology based on its potential for scaling. First, a phenomenon of improving figures of merit of the PCM cell with operational cycles is electrically characterized. Based on the electrical characterization and published material characterization data, a physical model of an evolving "active region" of the cell is proposed to explain the improvement of the cell parameters with operational cycles. Then, basic understanding is developed on early and erratic retention failure in a statistically significant number of cells in a large array and, electrical characterization and physical modeling is used to explain the mechanism behind the early retention failure.
    URI
    http://hdl.handle.net/2152/3666
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV