Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Least supersolution approach to regularizing elliptic free boundary problems

    Thumbnail
    Date
    2007
    Author
    Moreira, Diego Ribeiro, 1977-
    Metadata
    Show full item record
    Abstract
    In this dissertation, we study a free boundary problem obtained as a limit as [epsilon omplies 0] to the following regularizing family of semilinear equations [Delta]u = [Beta subscript epsilon](u)F([gradient]u), where [Beta subscript epsilon] approximates the Dirac delta in the origin and F is a Lipschitz function bounded away from 0 and infinity. The least supersolution approach is used to construct solutions satisfying geometric properties of the level surfaces that are uniform. This allows to prove that the free boundary of the limit has the "right" weak geometry, in the measure theoretical sense. By the construction of some barriers with curvature, the classification of global profiles for the blow-up analysis is carried out and the limit function is proven to be a viscosity and pointwise solution (a.e) to a free boundary problem. Finally, the free boundary is proven to be a C[superscript 1, alpha] surface around H[superscript n-1] a.e. point.
    URI
    http://hdl.handle.net/2152/3374
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV