Designs and calibration of delay-line based ADCs

Date

2015-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Delay line ADCs become more and more attractive with technology scaling to smaller dimensions with lower voltages. Time domain resolution can be increased by high speed delay cells. A GHz sampling rate can be easily achieved with low power. However, linearity, which has always been an issue, becomes a problem with longer delay lines. Resolutions of reported delay-line ADCs are hardly more than 4 bits with sampling rates of hundreds of MHz. Thus, this dissertation addresses the linearity issue of delay line ADCs.

First, a novel 11-bit hybrid ADC using flash and delay line architectures, where a 4-bit flash ADC is followed by a 7-bit delay-line ADC, is proposed. In this structure, the noise/error of the second stage delay-line ADC is attenuated at the hybrid ADC output, such that the overall performance would not be limited by the poor linearity of the delay-line ADC. The achieved figure of merit (FOM) of 33.8 fJ/conversion-step is competitive with state-of-the-art ADCs. Furthermore, the proposed ADC inherits accuracy and high speed from the flash ADC and the delay-line ADC, respectively. The inherited advantages strongly support the scalability of the proposed ADC to provide a better performance with low power in further scaled fabrication processes.

Second, in order to remove the harmonic distortion of delay-line ADC, we present a technique which extends harmonic distortion correction (HDC) to digitally calibrate a delay-line ADC. In our simulation results, digital calibration improves SNDR from 25.6 dB to 42.5 dB by averaging 227 sample points, which corresponds to a 0.86 second calibration time.

Last, a multiple-pass delay line ADC is proposed to improve overall ADC performance in terms of speed and resolution. In this structure, a multiple-pass delay cell can be early triggered by the previous cell to increase speed. Also, phase interpolation is used to improve the effective number of bits. The design is designed and simulated in a commercial 40nm process technology. With 500MHz sampling rate, the multiple-pass delay line ADC achieves an SNDR of 37 dB and consumes 4.2 mW, which is competitive with other reported ADCs.

Description

Citation