Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probing aptamer specificity for diagnostics

    Thumbnail
    Date
    2007
    Author
    Lee, Jennifer Fang En, 1977-
    Metadata
    Show full item record
    Abstract
    Theoretical studies focusing on the nature of landscapes that correlate molecular sequences to molecular function have mainly been carried out in silico due to the vast amounts of data that are needed for analysis. In vitro selections of aptamers are a good model system to study theoretical questions at a experimental level. With the introduction of robotic platforms that conduct in vitro selections, it is now capable of producing significant amounts of data in a short time, making theoretical modeling with real experimental data attainable. I will be using a Biomek 2000 Laboratory Automation Workstation to carry out multiple in vitro nucleic acid selections in parallel. I will explore the sequence space to examine whether existing in vitro selection systems are optimal at isolating the best winning species. New methods will be introduced that will allow for the selection of identical targets with identical pools free of cross contamination on the open robotic system. This will open the doors to further conduct selections against other identical or highly similar targets, such as complex cellular targets. Finally, I will investigate the methods to improve the effectiveness at isolating aptamers against the highly complex lung cancer cell lines. These targets are highly challenging for isolating specific aptamers because of the great diversity of biomarkers found among them. Moreover, their highly morphological similarity of the cultured cells makes selections for specific aptamers very difficult. I explore the different methods that will allow for the generation of aptamers that can distinguish between non-small cell lung cancer and small cell lung cancer, and between non-small cell lung cancer and normal lung cells. Fine-tuning of this process is essential at transferring this process to automated platforms for large-scale generation of biosensors against tumor biomarkers.
    URI
    http://hdl.handle.net/2152/3320
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV