Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical clustering of data

    Thumbnail
    Date
    2015-05
    Author
    Zhang, Lihao
    0000-0003-0368-0657
    Metadata
    Show full item record
    Abstract
    Cluster analysis aims at segmenting objects into groups with similar members and, therefore helps to discover distribution of properties and correlations in large datasets. Data clustering has been widely studied as it arises in many domains in marketing, engineering, and social sciences. Especially, the occurrence of transactional and experimental datasets in large scale in recent years significantly increased the necessity of clustering techniques to reduce the size of the existing objects, to achieve a better knowledge of the data. This report introduced fundamental concepts related to cluster analysis, addressed the similarity and dissimilarity measurements for cluster definition, and clarified three major clustering algorithms-hierarchical clustering, K-means clustering and Gaussian mixture model fitted by Expectation-Maximization (EM) algorithm-theoretically and experimentally to illustrate the process of clustering. Finally, methods of determining the number of clusters and validating the clustering were presented as for clustering evaluation.
    URI
    http://hdl.handle.net/2152/32491
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV