Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative analysis of parallel prefix adders in 32nm and 45nm static CMOS technology

    Thumbnail
    Date
    2015-05
    Author
    Naganathan, Vignesh
    Metadata
    Show full item record
    Abstract
    Binary adders form a major part in various arithmetic logical operation units including multipliers, dividers and digital signal processors. Parallel prefix adders represent a set of efficient structures for binary addition, greatly suited for VLSI implementation due to their regularity and speed. This report is focused on the comparative analysis of 5 major types of parallel prefix adder frameworks namely Kooge-Stone, Knowles adders, Brent-Kung, Han-Carlson and Ladner-Fischer adders implemented in Synopsys's SAED 32nm static CMOS technology operating at 1.05V for 8-bit, 16-bit and 32-bit input vectors based on power, performance and area (PPA) metrics. The process technology is modeled with 9 metal tracks. Power, performance and area metrics based on circuit simulations are used for comparison. The metrics are compared across SAED 32nm and FreePDK 45nm technology to quantify the impact of technology on architecture.
    URI
    http://hdl.handle.net/2152/32303
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV