Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A construction of hyperkähler metrics through Riemann-Hilbert problems

    Thumbnail
    Date
    2015-08
    Author
    Garza, César A.
    0000-0002-2196-1826
    Metadata
    Show full item record
    Abstract
    In 2009 Gaiotto, Moore and Neitzke presented a new construction of hyperkähler metrics on the total spaces of certain complex integrable systems, represented as a torus fibration M over a base space B, except for a divisor D in B, in which the torus fiber degenerates into a nodal torus. The hyperkähler metric g is obtained via solutions X [subscript gamma] of a Riemann-Hilbert problem. We interpret the Kontsevich-Soibelman Wall Crossing Formula as an isomonodromic deformation of a family of RH problems, therefore guaranteeing continuity of X at the walls of marginal stability. The latter functions are obtained through standard Banach contraction principles. By obtaining uniform estimates on arbitrary derivatives of X [subscript gamma], the smoothness property is obtained. To extend this construction to singular fibers, we use the Ooguri-Vafa case as our model and choose a suitable gauge transformation that allow us to define an integral equation defined at the degenerate fiber, whose solutions are the desired Darboux coordinates X [subscript gamma].
    URI
    http://hdl.handle.net/2152/32229
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV