Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stability and turbulence characteristics of a spiraling vortex filament using proper orthogonal decomposition

    Thumbnail
    Date
    2015-05
    Author
    Mula, Swathi Mahalaxmi
    Metadata
    Show full item record
    Abstract
    The stability and turbulence characteristics of a vortex filament emanating from a single-bladed rotor in hover are investigated using proper orthogonal decomposition. The rotor is operated at a tip chord Reynolds number and a tip Mach number of 218,000 and 0.22, respectively, and with a blade loading of CT /σ = 0.066. In-plane components of the velocity field (normal to the axis of the vortex filament) are captured by way of 2D particle image velocimetry with corrections for vortex wander being performed using the Γ1 method. Using the classical form of POD, the first POD mode alone is found to encompass nearly 75% of the energy for all vortex ages studied and is determined using a grid of sufficient resolution as to avoid numerical integration errors in the decomposition. The findings reveal an equal balance between the axisymmetric and helical modes during vortex roll-up which immediately transitions to helical mode dominance at all other vortex ages. This helical mode is one of the modes of the elliptic instability. While the snapshot POD is shown to reveal similar features of the first few energetic modes, the classical POD is employed here owing to the easier interpretation of the Fourier-azimuthal modes. The spatial eigenfunctions of the first few Fourier-azimuthal modes associated with the most energetic POD mode are shown to be sensitive to the choice of the wander correction technique used. Higher Fourier-azimuthal modes are observed in the outer portions of the vortex and appeared not to be affected by the choice of the wander correction technique used.
    URI
    http://hdl.handle.net/2152/30268
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV