Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Validation of level set contact angle method for multiphase flow in porous media

    Thumbnail
    Date
    2014-12
    Author
    Verma, Rahul
    Metadata
    Show full item record
    Abstract
    Pore-scale simulation has become increasingly important in recent years as a tool to understand multiphase flow behavior. Wettability affects aspects of flow such as capillary-pressure saturation curves, residual saturation of each phase, and relative permeability. Simulation of wettability at the pore-scale is still a non-trivial problem, and many different approaches exist to model it. In this work, we implement a variational level set formulation to impose different contact angles at the solid-fluid-fluid contact line for two-phase flow in simple rhomboidal pore geometries, and calculate the maximum mean curvature (equivalently capillary pressure) for each case. We compare our results with a detailed set of analytical and experimental results in a range of pore geometries of varying wettability from Mason and Morrow (1994), and demonstrate the accuracy of this method. While the simulations shown are for relatively simple geometries, the method has the ability to handle arbitrarily complex geometry (such as input from X-ray microtomography imaging).
    URI
    http://hdl.handle.net/2152/28661
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV