Learnable similarity functions and their application to record linkage and clustering

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Many machine learning and data mining tasks depend on functions that estimate similarity between instances. Similarity computations are particularly important in clustering and information integration applications, where pairwise distances play a central role in many algorithms. Typically, algorithms for these tasks rely on pre-defined similarity measures, such as edit distance or cosine similarity for strings, or Euclidean distance for vector-space data. However, standard distance functions are frequently suboptimal as they do not capture the appropriate notion of similarity for a particular domain, dataset, or application. In this thesis, we present several approaches for addressing this problem by employing learnable similarity functions. Given supervision in the form of similar or disviii similar pairs of instances, learnable similarity functions can be trained to provide accurate estimates for the domain and task at hand. We study the problem of adapting similarity functions in the context of several tasks: record linkage, clustering, and blocking. For each of these tasks, we present learnable similarity functions and training algorithms that lead to improved performance. In record linkage, also known as duplicate detection and entity matching, the goal is to identify database records referring to the same underlying entity. This requires estimating similarity between corresponding field values of records, as well as overall similarity between records. For computing field-level similarity between strings, we describe two learnable variants of edit distance that lead to improvements in linkage accuracy. For learning record-level similarity functions, we employ Support Vector Machines to combine similarities of individual record fields in proportion to their relative importance, yielding a high-accuracy linkage system. We also investigate strategies for efficient collection of training data which can be scarce due to the pairwise nature of the record linkage task. In clustering, similarity functions are essential as they determine the grouping of instances that is the goal of clustering. We describe a framework for integrating learnable similarity functions within a probabilistic model for semi-supervised clustering based on Hidden Markov Random Fields (HMRFs). The framework accommodates learning various distance measures, including those based on Bregman divergences (e.g., parameterized Mahalanobis distance and parameterized KL-divergence), as well as directional measures (e.g., cosine similarity). Thus, it is applicable to a wide range of domains and data representations. Similarity functions are learned within the HMRF-KMEANS algorithm derived from the framework, leading to significant improvements in clustering accuracy. The third application we consider, blocking, is critical in making record linkage and clustering algorithms scalable to large datasets, as it facilitates efficient selection of approximately similar instance pairs without explicitly considering all possible pairs. Previously proposed blocking methods require manually constructing a similarity function or a set of similarity predicates, followed by hand-tuning of parameters. We propose learning blocking functions automatically from linkage and semi-supervised clustering supervision, which allows automatic construction of blocking methods that are efficient and accurate. This approach yields computationally cheap learnable similarity functions that can be used for scaling up in a variety of tasks that rely on pairwise distance computations, including record linkage and clustering.

Description

text

Keywords

Citation