Synthesis, characterization, and oxygen evolution reaction catalysis of nickel-rich oxides

Date

2014-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A successful transition from fossil fuels to renewable energies such as wind and solar will require the implementation of high-energy-density storage technologies. Promising energy storage technologies include lithium-ion batteries, metal-air batteries, and hydrogen production via photoelectrochemical water splitting. While these technologies differ substantially in their mode of operation, they often involve transition-metal oxides as a component. Thus, fundamental materials research on metal oxides will continue to provide much needed advances in these technologies. In this thesis, the electrochemical and electrocatalytic properties of Fe- and Mn-substituted layered LiNiO₂ materials were investigated. These materials were prepared by heating mixed nitrate precursors in O₂ atmosphere at 700-850 °C for 12 h with intermediate grindings. The products were chemically delithiated with NO₂BF₄, and the delithiated samples were annealed at moderate temperatures in order to transform them to a spinel-like phase. Samples were characterized by inductively coupled plasma analysis and Rietveld refinement of the X-ray diffraction patterns, which were found to be in reasonably close agreement regarding lithium stoichiometry. Spinel-like materials were found to possess an imperfect spinel structure when heated at lower temperatures and a significant amount of NiO impurity was formed when heated to higher temperatures. This structural disorder was manifested during electrochemical cycling -- only Mn-rich compositions showed reversible capacities at a voltage of around 4.5 V. The layered materials exhibited significant capacity loss upon cycling, and this effect was magnified with increasing Fe content. These materials were further investigated as catalysts for the oxygen evolution reaction (OER). All samples containing Mn exhibited low OER activity. In addition, delithiation degraded catalyst performance and moderate temperature annealing resulted in further degradation. Because delithiation significantly increased surface area, activities were compared to the relative to BET surface area. Li₀.₉₂Ni₀.₉Fe₀.₁O₂ exhibited significantly higher catalytic activity than Li₀.₈₉Ni₀.₇Fe₀.₃O₂. This prompted testing of Li[subscript x]Ni₁₋[subscript y]Fe[subscript y]O₂ (y = 0, 0.05, 0.1, 0.2, and 0.3) samples. It was found that a Fe content of approximately 10% resulted in the highest OER activity, with decreased activities for both larger and smaller Fe contents. These results were found to be consistent with studies of Fe substituted nickel oxides and oxyhydroxides, suggesting a similar activation mechanism.

Description

text

Citation