Energy and environmental contexts of cities, transportation systems, and emerging vehicle technologies : how plug-in electric vehicles and urban design influence energy consumption and emissions

Date

2013-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis is divided into two parts. The first evaluates the role of the built environment in life-cycle energy consumption, by comparing different neighborhood and city styles. Through a holistic modeling and accounting framework, this work identifies the largest energy-consuming sectors, among residential and commercial buildings, personal vehicles and transit trips, and supporting infrastructure (roads, sidewalks, parking lots, water pipes, street lighting). Life-cycle energy calculations include operational energy use (e.g., gasoline for vehicles, electricity and natural gas for buildings) and embodied energy used to produce materials and construct buildings and infrastructure. Case study neighborhoods in Austin, Texas, and larger-scale regional models suggest that building energy demands comprise around 50% of life-cycle energy demands, while transportation demands (from driving and infrastructure alike) contribute around 40%, across all cases. However, results also suggest that population density and average residential unit size play a major role in defining per-capita energy consumption. Operational demands made up about 90% of life-cycle energy demands, suggesting that v most urban energy savings can be obtained from reduced personal vehicle trips and more efficient vehicles and buildings. Case study comparisons suggest that neighborhoods and regions with greater density and higher share of multi-family housing units tend to reduce operational (and thus life-cycle) energy demands with less travel demand and decreased home and work energy use, per capita. The second part of this modeled plug-in electric vehicle (PEV) emissions impacts in Texas, by considering four possible vehicle adoption scenarios (where PEVs make up 1, 5, 10, and 25% of total passenger vehicles). The analysis anticipates PEV electricity demand and emissions rates, based on current Texas power grid data. Results indicate that PEV emissions depend significantly on which specific power plants are used to power the vehicles, but that PEVs' average per-mile emissions rates for NO[subscript x], PM, and CO₂ are all likely to be lower than today's average passenger car, when today's average mix is used. Power produced from 100% coal plants could produce 14 times as much NO[subscript x], 3,200 times as much SO₂, nearly 10 times as much CO₂ and CO₂eq, 2.5 times as much PM₁₀, and VOCs, and nearly 80 times the NO₂ compared to a grid with 100% natural gas plants.

Description

text

Citation