Show simple item record

dc.contributor.advisorBell, Christopher J., 1966-
dc.creatorBurroughs, Robert Wayneen
dc.date.accessioned2013-11-15T18:20:21Zen
dc.date.accessioned2017-05-11T22:37:23Z
dc.date.available2017-05-11T22:37:23Z
dc.date.issued2013-08en
dc.date.submittedAugust 2013en
dc.identifier.urihttp://hdl.handle.net/2152/22225en
dc.descriptiontexten
dc.description.abstractThere are more than 300 species of extant turtles, the majority of which belong to the Testudinoidea. Here I describe a new box turtle from the Eocene-Oligocene boundary of west Texas. This specimen impacts the phylogeny of Testudinoid turtles by pulling the divergence of extant Testudinoid turtles back in time approximately 25 million years. This results in a need to refocus on paleontological research of Testudinoid turtles into the late Paleogene and early Neogene to identify fossil localities and specimens that can help further elucidate the evolution of the group. New work on the fossil record of turtles also requires a re-evaluation of methods used for identifying and evaluating the evolutionary history of turtles as a group. An implicit assumption over the last 150 years of turtle paleontology was that both turtle shells and turtle heads reveal congruent and complimentary evolutionary relationships. This assumption was never adequately tested. I utilized a series of methods to evaluate the congruency of phylogenetic hypotheses using disparate anatomical regions. Using a dataset of extant Emydid turtles, I evaluated whether turtle shells and turtle heads provided congruent and complimentary phylogenetic hypotheses. My methods employed parsimony-based reconstruction, maximum-likelihood-based reconstruction, and Bayesian-based reconstruction, including Bayesian-partition analyses. My conclusions are that heads and shells do not provide fully congruent topologies, and that in many cases there is a loss of phylogenetic resolution when only turtle sklls are used to generate phylogenies. The implication is that a focus on a robust and complete dataset of anatomical features will provide the best basis for further investigation of fossils. My work also provides a framework for dataset exploration by providing a method to identify the most robust phylogenetic signal found within a dataset. This framework will allow non-turtle paleontologists and systematists the ability to further investigate their own datasets and develop robust hypotheses of evolutionary relationships across the diversity of the tree of Life.en
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.subjectPaleontologyen
dc.subjectHerpetologyen
dc.subjectPhylogenyen
dc.subjectBox turtleen
dc.subjectAnatomical regionen
dc.subjectBayesian analysisen
dc.titleFossils, phylogeny, and anatomical regions : insights exemplified through turtlesen
dc.description.departmentGeological Sciencesen
dc.date.updated2013-11-15T18:20:22Zen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record