Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tetrathiafulvalene Schiff-base ligands and anion receptors

    Thumbnail
    Date
    2012-12
    Author
    Bejger, Christopher Michael
    Metadata
    Show full item record
    Abstract
    Over the last decade, the classic organic donor tetrathiafulvalene (TTF) has emerged as an important functionality in supramolecular systems and complex ligand chemistry. Due to synthetic advances, TTF is no longer a moiety strictly limited to the area of charge transfer salts in material science. In fact, many complex systems incorporating the electron rich donor system are known. More can be imagined. This doctoral dissertation describes the author's journey in designing, synthesizing, and studying various compounds in which the TTF moiety serves a practical purpose, oftentimes giving known molecules new functions. The reported findings have led to a greater understanding of anion binding effects on TTF-containing anion receptors, the use of transition metals to pre-organize [pi]-faces for through-space donor-acceptor interactions, and the introduction of actinide species to tetrathiafulvalene ligands. The first Chapter provides a brief introduction and a short history of TTF chemistry. It also provides an overview describing the fundamental properties of TTF compounds, including TTF dimeric behavior and redox properties. Chapter 2, as the major focus of this dissertation, details the use of a flexible TTF-modified macrocyclic ligand, which upon metallation can effectively preorganize two TTF units to interact when oxidized. Specifically, a new way to stabilize the through-space mixed-valence TTF dimer, in which a transition metal can affect the degree of interaction between the two TTF units, is described. The mixed-valence TTF species in question could see use as components in molecular machines and could play an important role as molecular organic conductors, and discussions along these lines are included in this chapter. These mixed valence complexes were investigated by spectroscopic (¹H-NMR, UV-Vis NIR titrations, and EPR analysis) and X-ray single crystallographic analyses involving both the neutral and oxidized products. Chapter 3 introduces the synthesis, characterization, and electrochemistry of the first TTF-ligand to form a complex with an actinide cation. Chapter 4 details the synthesis, binding studies and X-ray single crystallographic analyses of a TTF-based electrochemical sensor for dihydrogen phosphate anion detection. Experimental procedures and characterization data are reported in Chapter 5.
    URI
    http://hdl.handle.net/2152/22120
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV