Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas at Austin
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constrained relative entropy minimization with applications to multitask learning

    Thumbnail
    Date
    2013-05
    Author
    Koyejo, Oluwasanmi Oluseye
    Metadata
    Show full item record
    Abstract
    This dissertation addresses probabilistic inference via relative entropy minimization subject to expectation constraints. A canonical representation of the solution is determined without the requirement for convexity of the constraint set, and is given by members of an exponential family. The use of conjugate priors for relative entropy minimization is proposed, and a class of conjugate prior distributions is introduced. An alternative representation of the solution is provided as members of the prior family when the prior distribution is conjugate. It is shown that the solutions can be found by direct optimization with respect to members of such parametric families. Constrained Bayesian inference is recovered as a special case with a specific choice of constraints induced by observed data. The framework is applied to the development of novel probabilistic models for multitask learning subject to constraints determined by domain expertise. First, a model is developed for multitask learning that jointly learns a low rank weight matrix and the prior covariance structure between different tasks. The multitask learning approach is extended to a class of nonparametric statistical models for transposable data, incorporating side information such as graphs that describe inter-row and inter-column similarity. The resulting model combines a matrix-variate Gaussian process prior with inference subject to nuclear norm expectation constraints. In addition, a novel nonparametric model is proposed for multitask bipartite ranking. The proposed model combines a hierarchical matrix-variate Gaussian process prior with inference subject to ordering constraints and nuclear norm constraints, and is applied to disease gene prioritization. In many of these applications, the solution is found to be unique. Experimental results show substantial performance improvements as compared to strong baseline models.
    URI
    http://hdl.handle.net/2152/20793
    Collections
    • University of Texas at Austin

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV