Show simple item record

dc.contributor.advisorFiete, Gregory A.en
dc.contributor.committeeMemberDemkov, Alexander Aen
dc.contributor.committeeMemberMacDonald, Allan Hen
dc.contributor.committeeMemberNiu, Qianen
dc.contributor.committeeMemberSadun, Lorenzoen
dc.creatorZyuzin, Vladimir Alexandrovichen
dc.date.accessioned2013-02-22T16:18:31Zen
dc.date.accessioned2017-05-11T22:31:31Z
dc.date.available2017-05-11T22:31:31Z
dc.date.issued2012-05en
dc.date.submittedMay 2012en
dc.identifier.urihttp://hdl.handle.net/2152/19536en
dc.descriptiontexten
dc.description.abstractThis dissertation is devoted to theoretical studies of strongly interacting one-dimensional and quasi one-dimensional electron systems. The properties of one-dimensional electron systems can be studied within the bosonization technique, which presents fermions as collective bosonic density excitations. The power of this approach is the ability to treat electron-electron interaction exactly in the low-energy limit. The approach predicts the failure of Fermi liquid and an absence of long-range order in one-dimensions. The low-energy description of one-dimensional interacting systems is called the Tomonaga-Luttinger liquid theory. For example, the edges of quantum Hall systems are one-dimensional and described by a chiral Tomonaga-Luttinger liquid. Another example is a quantum spin Hall system with helical edge states, which are also described by a Tomonaga-Luttinger liquid. In our first work, a study of magnetized edge states of quantum spin-Hall system is presented. A magnetic field dependent signature of such edges is obtained, which can be verified in a Coulomb drag experiment. The second part of the dissertation is devoted to quasi-one dimensional antiferromagnetic lattices. A spatially anisotropic lattice antiferromagnet can be viewed as an array of one dimensional spin chains coupled in a way to match the lattice symmetry. This allows to use the non-Abelian bosonization technique to describe the low-energy physics of spin chains and study the inter-chain interactions perturbatively. The work presented in the dissertation studies the effect of Dzyaloshinskii-Moriya interaction on the magnetic phase diagram of the spatially anisotropic kagome antiferromagnet. We predict a Dzyaloshinskii-Moriya interaction driven phase transition from Neel to Neel+dimer state. In the third work, a novel model of the fractional quantum Hall effect is given. Wave functions of two-dimensional electrons in strong and quantizing magnetic field are essentially one-dimensional. That invites one to use the one-dimensional phenomenological bosonization to describe the density fluctuations of the two-dimensional interacting electrons in magnetic field. Remarkably, the constructed trial bosonized fermion operator describing the electron states with a fixed Landau gauge momentum is effectively two-dimensional.en
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.subjectBosonizationen
dc.subjectCoulomb dragen
dc.subjectKagome antiferromagneten
dc.subjectFractional quantum Hall effecten
dc.titleOne-dimensional bosonization approach to higher dimensionsen
dc.description.departmentPhysicsen
dc.date.updated2013-02-22T16:18:31Zen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record