The roles of CYT-18 in folding, misfolding and structural specificity of the Tetrahymena group I ribozyme

Date

2009-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Group I introns are structured RNAs that have been used extensively as model systems for RNA folding because they are experimentally tractable, yet complex enough to have folding challenges associated with larger RNAs. The Tetrahymena group I intron consists of a set of conserved core helices and a set of peripheral elements. Peripheral elements surround the core helices and form long range tertiary contacts between each other and to the core. Interestingly, a long-lived misfolded state is populated that has the same long range tertiary contacts as the native state but differs locally within the core. Our lab showed that the intact periphery is necessary to specify the correct core structure, as mutating tertiary contacts or removing the P5abc peripheral element dramatically destabilized the native ribozyme relative to the misfolded form. However, we also showed that the thermodynamic benefit peripheral structure provided is accompanied by kinetic liability in folding, apparently because native tertiary contacts formed by peripheral elements around the misfolded core must come apart to allow refolding of the misfolded RNA to the native state. In addition to peripheral elements, proteins also play a role in stabilizing the native structures of many group I introns. The CYT-18 protein, which occupies the same binding site as P5abc, stabilizes the functional structures of certain group I introns by using a set of insertions that are absent in other related bacterial and mitochondrial aminoacyl tRNA synthetases. Using the P5abc deletion variant of the Tetrahymena ribozyme, I sought to further define CYT-18 roles in RNA folding by probing its thermodynamic and kinetic effects on the native state formation relative to the misfolded state. I demonstrated that CYT-18, like P5abc, provided thermodynamic stability to the native state. However, unlike P5abc, CYT-18 had no apparent effect on the refolding kinetics, suggesting that a protein co-factor can stabilize the functional structure without acquiring the associated costs in RNA folding kinetics. Furthermore, I found that the mechanism of CYT-18 action appears to be distinct from P5abc. Disruption of the long-range contact P14, which is formed between P5c and L2 and is part of the network of peripheral contacts, dramatically weakened P5abc binding to the native ribozyme core by ~10⁸ fold. Interestingly, CYT-18 maintained specific and tight binding to these mutants, which suggests that CYT-18 does not rely on a circular network of contacts to specifically stabilize the native state. Instead, the specificity may arise from a more direct and intimate contact of CYT-18 with the ribozyme core. This study gives insight into an evolutionary advantage of protein co-factors in RNA folding; proteins may offer thermodynamic assistance without inhibiting folding kinetics.

Description

text

Citation