Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas Southwestern Medical Center
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • University of Texas Southwestern Medical Center
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of the Fair Technique for Specific Brain region Perfusion Studies

    Thumbnail
    View/Open
    lixiufeng.pdf (8.305Mb)
    Date
    2009-01-14
    Author
    Li, Xiufeng
    Metadata
    Show full item record
    Abstract
    Most of the technical development and applications of ASL (arterial spin labeling) imaging have mainly focused on the superior cortical regions of the brain. However, optimal ASL measurements to quantify cerebral blood flow (CBF) in specific brain regions may require optimized parameters, improved techniques, or new imaging schemes based upon physiological or anatomic characteristics of those brain regions. In this thesis, the advantages of this region-targeted approach are demonstrated by performing quantitative perfusion studies of two representative brain regions, the cerebellum in the inferior part of the brain and the hippocampus in the mid-brain. To minimize or eliminate the venous artifacts found in cerebellum perfusion studies using traditional FAIR (flow-sensitive alternating inversion recovery) technique, FAIR ASST (FAIR with active suppression of superior tagging technique), as well as MDS FAIR, (modulated dual saturation pulse trains for FAIR) was developed and compared to PICORE (proximal inversion with a control for off-resonance effects) for quantifying cerebellum perfusion. The data indicate that FAIR ASST yields more robust CBF (cerebral blood flow) measurements. OPTIMAL FAIR (orthogonally-positioned tagging imaging method for arterial labeling of FAIR) was developed and shown to reduce the heterogeneity of within-slice transit time and to minimize partial volume effects, improving quantitative CBF maps for cerebellum and hippocampus. These techniques were optimized and applied to the study of perfusion abnormalities in brain regions important to the study of Gulf War Syndrome. Together with regionally optimized parameters, these ASL methods provide more reliable, efficient, accurate, and artifact-free CBF measurements than methods previously available.
    URI
    http://hdl.handle.net/2152.5/536
    Collections
    • University of Texas Southwestern Medical Center

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV