Reactivity of ethylene oxide in contact with contaminants

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ethylene oxide (EO) is a very versatile compound with considerable energy in its ring structure. Its reactions proceed mainly via ring opening and are highly exothermic. Under some conditions, it is known to undergo a variety of reactions, such as isomerization, polymerization, hydrolysis, combustion and decomposition Due to its very reactive characteristic and widely industrial applications, EO has been involved in a number of serious incidents such as Doe Run 1962, Freeport 1974, Deer Park 1988 and Union Carbide Corporation?s Seadrift 1991. The impacts can be severe in terms of death and injury to people, damage to physical property and effects on the environment. For instance, the Union Carbide incident in 1991 caused one fatality and extensive damage to the plant with the property damage of up to 80 million dollars. Contamination has a considerable impact on EO reactivity by accelerating substantially its decomposition and playing a key role on EO incidents. In this work, the reactivity of EO with contaminants such as KOH, NaOH, NH4OH, and EDTA is evaluated. Useful information that is critical to the design and operation of safer chemical plant processes was generated such as safe storage temperatures (onset temperature), maximum temperature, maximum pressure, temperature vs. time, heat and pressure generation rates as a function of temperature and time to maximum rate using adiabatic calorimetry. A special arrangement for the filling-up of the cell was constructed due to the gaseous nature and toxicity of EO. A comparison of their thermal behavior is also presented since several contaminants are studied.

Description

Citation