Mercury emission control for coal fired power plants using coal and biomass

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Description

Keywords

Citation