Electric field manipulation of polymer nanocomposites: processing and investigation of their physical characteristics

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Research in nanoparticle-reinforced composites is predicated by the promise for exceptional properties. However, to date the performance of nanocomposites has not reached its potential due to processing challenges such as inadequate dispersion and patterning of nanoparticles, and poor bonding and weak interfaces. The main objective of this dissertation is to improve the physical properties of polymer nanocomposites at low nanoparticle loading. The first step towards improving the physical properties is to achieve a good homogenous dispersion of carbon nanofibers (CNFs) and single wall carbon nanotubes (SWNTs) in the polymer matrix; the second step is to manipulate the well-dispersed CNFs and SWNTs in polymers by using an AC electric field. Different techniques are explored to achieve homogenous dispersion of CNFs and SWNTs in three polymer matrices (epoxy, polyimide and acrylate) without detrimentally affecting the nanoparticle morphology. The three main factors that influence CNF and SWNT dispersion are: use of solvent, sonication time, and type of mixing. Once a dispersion procedure is optimized for each polymer system, the study moves to the next step. Low concentrations of well dispersed CNFs and SWNTs are successfully manipulated by means of an AC electric field in acrylate and epoxy polymer solutions. To monitor the change in microstructure, alignment is observed under an optical microscope, which identifies a two-step process: rotation of CNFs and SWNTs in the direction of electric field and chaining of CNFs and SWNTs. In the final step, the aligned microstructure is preserved by curing the polymer medium, either thermally (epoxy) or chemically (acrylate). The conductivity and dielectric constant in the parallel and perpendicular direction increased with increase in alignment frequency. The values in the parallel direction are greater than the values in the perpendicular direction and anisotropy in conductivity increased with increase in AC electric field frequency. There is an 11 orders magnitude increase in electrical conductivity of 0.1 wt% CNF-epoxy nanocomposite that is aligned at 100 V/mm and 1 kHz frequency for 90 minutes. Electric field magnitude, frequency and time are tuned to improve and achieve desired physical properties at very low nanoparticle loadings.

Description

Citation