Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ro(g)-graded equivariant cohomology theory and sheaves

    Thumbnail
    Date
    2009-05-15
    Author
    Yang, Haibo
    Metadata
    Show full item record
    Abstract
    If G is a nite group and if X is a G-space, then a Bredon RO(G)-graded equivariantcohomology theory is dened on X. Furthermore, if X is a G-manifold, thereexists a natural ?ech hypercohomology theory on X. While Bredon RO(G)-gradedcohomology is important in the theoretical aspects, the ?ech cohomology is indispensablewhen computing the cohomology groups. The purpose of this dissertation is toconstruct an isomorphism between these two types of cohomology theories so that theinterplay becomes deeper between the theory and concretely computing cohomologygroups of classical objects. Also, with the aid of ?ech cohomology, we can naturallyextend the Bredon cohomology to the more generalized Deligne cohomology.In order to construct such isomorphism, on one hand, we give a new constructionof Bredon RO(G)-graded equivariant cohomology theory from the sheaf-theoreticviewpoint. On the other hand, with Illman's theorem of smooth G-triangulation ofa G-manifold, we extend the existence of good covers from the nonequivariant tothe equivariant case. It follows that, associated to an equivariant good cover of aG-manifold X, there is a bounded spectral sequence converging to ?ech hypercohomologywhose E1 page is isomorphic to the E1 page of a Segal spectral sequence whichconverges to the Bredon RO(G)-graded equivariant cohomology. Furthermore, Thisisomorphism is compatible with the structure maps in the two spectral sequences. So there is an induced isomorphism between two limiting objects, which are exactly the?ech hypercohomology and the Bredon RO(G)-graded equivariant cohomology.We also apply the above results to real varieties and obtain a quasi-isomorphismbetween two commonly used complexes of presheaves.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2346
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV