Real-time dynamics for interactive environments

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis examines the design and implementation of an extensible objectoriented physics engine framework. The design and implementation consolidates concepts from the wide literature in the field and clearly documents the procedures and methods. Two primary dynamic behaviors are explored: rigid body dynamics and articulated dynamics. A generalized collision response model is built for rigid bodies and articulated structures which can be adapted to other types of behaviors. The framework is designed around the use of interfaces for modularity and easy extensibility. It supports both a standalone physics engine and a supplement to a distributed immersive rendering environment. We present our results as a number of scenarios that demonstrate the viability of the framework. These scenarios include rigid bodies and articulated structures in free-fall, collision with dynamic and static bodies, resting contact, and friction. We show that we can effectively combine different dynamics into one cohesive structure. We also explain how we can efficiently extend current behaviors to develop new ones, such as altering rigid bodies to produce different collision responses or flocking behavior. Additionally, we demonstrate these scenarios in both the standalone and the immersive environment.

Description

Citation