Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A T-Matrix Approach to Heavy Quark Interaction with Thermal Gluons in a Quark Gluon Plasma

    Thumbnail
    Date
    2012-10-19
    Author
    Huggins, Kyle
    Metadata
    Show full item record
    Abstract
    The interactions of heavy quarks within the Quark Gluon Plasma (QGP) are interpreted utilizing an elastic, thermodynamic, 2-body T-matrix in order to calculate drag coefficients of heavy-quark systems derived from a Fokker-Planck equation. A spacelike momentum constraint is employed and produces an effective, color dependent potential with the addition of relativistic factors motivated by the appropriate Feynman diagrams. Hard Thermal Loop (HTL) corrections are interpreted in the context of a finite temperature quark-gluon system, allowing a non-perturbative determination of the gluon's contribution to the drag coefficient. An enhancement of the relaxation rate of ~2 is observed at low momenta, leading to an enhancement of the overall relaxation rate of 20%, while the high-p limit approaches a perturbative level. The importance of a nonperturbative treatment of the QGP to reproduce the dynamical drag coefficient is illustrated.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11853
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV