Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific Applications on Multicore Systems

    Thumbnail
    Date
    2012-07-16
    Author
    Lively, Charles
    Metadata
    Show full item record
    Abstract
    Power consumption is an important constraint in achieving efficient execution on High Performance Computing Multicore Systems. As the number of cores available on a chip continues to increase, the importance of power consumption will continue to grow. In order to achieve improved performance on multicore systems scientific applications must make use of efficient methods for reducing power consumption and must further be refined to achieve reduced execution time. In this dissertation, we introduce a performance modeling framework, E-AMOM, to enable improved execution of scientific applications on parallel multicore systems with regards to a limited power budget. We develop models for each application based upon performance hardware counters. Our models utilize different performance counters for each application and for each performance component (runtime, system power consumption, CPU power consumption, and memory power consumption) that are selected via our performance-tuned principal component analysis method. Models developed through E-AMOM provide insight into the performance characteristics of each application that affect performance for each component on a parallel multicore system. Our models are more than 92% accurate across both Hybrid (MPI/OpenMP) and MPI implementations for six scientific applications. E-AMOM includes an optimization component that utilizes our models to employ run-time Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Concurrency Throttling to reduce power consumption of the scientific applications. Further, we optimize our applications based upon insights provided by the performance models to reduce runtime of the applications. Our methods and techniques are able to save up to 18% in energy consumption for Hybrid (MPI/OpenMP) and MPI scientific applications and reduce the runtime of the applications up to 11% on parallel multicore systems.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11095
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV