Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optical Properties of Saharan Dust and Asian Dust: Application to Radiative Transfer Simulations

    Thumbnail
    Date
    2012-07-16
    Author
    Fang, Guangyang
    Metadata
    Show full item record
    Abstract
    Because the bulk optical properties of dust are largely dependent on their chemical composition, published reports from numerous dust field studies enabled us to compile observation data sets to derive the effective complex refractive indices of Saharan and Asian dust. We considered the individual mineral components as aggregates and used the Bruggeman approximation to derive the effective refractive indices. Using the results, we calculated the single-scattering properties, including phase matrix, single-scattering albedo and asymmetry factor, with a combination of the T-matrix method and an improved geometric optics method (IGOM). The single-scattering properties were averaged by the measured particle size distribution to provide bulk optical properties for radiative transfer simulations. Using a Rapid Radiative Transfer Model (RRTM), the radiative forcing of mineral dust was computed at both the top of the atmosphere and the surface. By analyzing samples from various in-situ measurements, we assumed the Saharan and Asian dust to have average volume compositions and average aspect ratios. The effective refractive indices for Saharan and Asian dust were derived based on the assumed composition models. Bulk optical properties were integrated using the modified log-normal particle size distributions. The aspect ratio assumed in this study is 1.6 for both Saharan and Asian dust. The longwave radiative (IR) forcings at the top of the atmosphere (TOA) and at the surface were found to be positive and sensitive to wavelength. The shortwave (solar) radiative forcing at TOA, was also positive, but may possibly have been due to the strong absorption components considered in the composition models.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11078
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV