Impact of Acid Additives on Elastic Modulus of Viscoelastic Surfactants

Date

2012-02-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In live acid solutions at concentrations of HCl namely 15-20 wt% HCl, elastic modulus remained quite low as compared to 10-12 wt% HCl concentrations. At 10 wt% HCl concentration, elastic modulus was 3.4 Pa observed whereas at 20 wt% HCl concentration, elastic modulus was 0.03 Pa. 0.5- 1.0 wt% concentrations of NaCl and CaCl2 showed negligible effect on the elastic modulus while 3-10 wt % concentrations, substantially reduced the elastic modulus. As little as 0.5 wt% Fe (III) concentration reduced elastic modulus quite significantly. In live acids, increase in temperature resulted in viscous modulus dominating the elastic modulus. Corrosion inhibitor reduced values of elastic modulus significantly, at 10 wt% HCl concentration elastic modulus dropped from 5.1 Pa to 3.4 Pa. Preparation of acid solution with sea water showed negligible effect at higher concentrations of HCl (> 10 wt% HCl) whereas at lower concentrations of HCl the elastic modulus fell sharply.

For spent acid solutions, the elastic modulus at room temperature was quite low. Increase in temperature resulted in the increase in elastic modulus up to 130 F after which it decreased. At 190 - 205F and 18.8 rad/s, elastic modulus for 12 wt% HCl concentrations was 0.4 Pa whereas at 130 F, it was 2.25 Pa. At high temperatures (>130 F), the maximum elastic modulus shifted to higher concentrations of HCl namely 20 wt% HCl concentration. At 160 F, elastic modulus of 20 wt% HCl concentration at 18.8 rad/s was observed to be 2.6 Pa, whereas for 12 wt% HCl concentrations, it was 1.27 Pa. Throughout the HCl concentration and temperature range tested, viscous modulus dominated the elastic modulus for spent acid solutions.

The effects of organic acids namely, formic and acetic acid, on the elastic modulus of viscoelastic surfactants have also been investigated.

Description

Citation