Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications

Date

2011-10-21

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

At present, the United States generates biofuels (ethanol) from corn grain. Unfortunately, low crop yields and limited growth regions result in limited availability. Furthermore, the use of staple food crops for ethanol production has generated a highly controversial food vs. fuel debate. Because of its high abundance and relatively low cost, lignocellulosic biomass is a promising alternative feedstock for biofuel production; however, structural features of lignocellulose limit accessibility of enzymes or microorganisms. These structural barriers include high lignin content, acetyl groups on hemicellulose, high cellulose crystallinity, cellulose degree of polymerization, and small pore volume. To overcome these barriers, a variety of pretreatment processes (chemical and mechanical) have been developed.

Oxidative-lime pretreatment (OLP) is highly effective at reducing lignin content and removing acetyl groups from hemicellulose. Combining OLP with a mechanical treatment process greatly enhances the enzymatic digestibility of lignocellulose.

Recommended OLP conditions were determined for Dacotah (120 ?C, 6.89-bar O2, 240 min) and Alamo (110 ?C, 6-89-bar O2, 240 min) switchgrass. Using recommended conditions, 72-h glucan digestibilities (g glucan hydrolyzed/100 g glucan in raw biomass; 15 filter paper units/g raw glucan) of 85.2 and 88.5 were achieved for Dacotah and Alamo, respectively. Adding ball milling to OLP further enhanced glucan digestibility to 91.1 (Dacotah) and 90.0 (Alamo).

In previous studies, shock treatment achieved promising results, but was often inconsistent. This work refined shock treatment with a focus on using consistent procedures and performance analysis. The combination of OLP and shock treatment enhanced the 72-h glucan digestibility of several promising biomass feedstocks: bagasse (74.0), corn stover (92.0), poplar wood (94.0), sorghum (71.8), and switchgrass (89.0). Highly digestible lignocellulose can also be used as ruminant animal feed. Shock treatment plus OLP increased the total digestible nutrients (TDNN; g nutrients digested/100 g organic matter) of corn stover from 51.9 (untreated) to 72.6. Adding in pre-washed corn stover solubles to produce a combined feed (17.8 percent corn stover solubles and 82.2 percent shock OLP corn stover) increased TDNN to 74.9. Mixing in enough solubilized protein to match the crude protein content of corn grain further improved TDNN to 75.5, only 12.6 less than corn grain.

Description

Citation