Parameter Estimation and Tracking in Physical Layer Network Coding

Date

2012-07-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Recently, there has been a growing interest in improving the performance of the wireless relay networks through the use of Physical Layer Network Coding (PLNC) techniques. The physical layer network coding technique allows two terminals to transmit simultaneously to a relay node and decode the modulo-2 sum of the transmitted bits at the relay. This technique considerably improves performance over Digital Network Coding technique.

In this thesis, we will present an algorithm for joint decoding of the modulo-2 sum of bits transmitted from two unsynchronized transmitters at the relay. We shall also address the problems that arise when boundaries of the signals do not align with each other and when the channel parameters are slowly varying and are unknown to the receiver at the relay node. Our approach will first jointly estimate the timing o sets and fading gains of both signals using a known pilot sequence sent by both transmitters in the beginning of the packet and then perform Maximum Likelihood detection of data using a state-based Viterbi decoding scheme that takes into account the timing o sets between the interfering signals. We shall present an algorithm for simultaneously tracking the amplitude and phase of slowly varying wireless channel that will work in conjunction our Maximum Likelihood detection algorithm. Finally, we shall provide extension of our receiver to support antenna diversity.

Our results show that the proposed detection algorithm works reasonably well, even with the assumption of timing misalignment. We also demonstrate that the performance of the algorithm is not degraded by amplitude and/or phase mismatch between the users. We further show that the performance of the channel tracking algorithm is close to the ideal case i.e. when the channel estimates are perfectly known. Finally, we demonstrate the performance boost provided by the receiver antenna diversity.

Description

Citation