A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna

Date

2012-02-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Trough waveguides (TWG) have been utilized in a variety of radio frequency (RF) and other related applications including radar, the treatment of hypothermia and in the generation of plasmas. Perturbing the guided wave in these structures with blocks, rods, dielectrics, and other structures can create reconfigurable periodic line sources. These trough waveguide antennas (TWA) are then capable of providing both fixedfrequency and frequency-dependent beam steering. This was originally performed using electro-mechanical ?cam-and-gear? mechanisms. Previous work related to the excitation of TWG and the performance of TWA topologies are limited when compared to more common antenna designs, yet they possess many desirable features that can be exploited in a modern system. This thesis will examines an S-band rectangular-to-trough waveguide transition and trough guide antenna that has been designed for broadband reconfigurable antenna applications considering as well the airflow characteristics for sensing applications. The design, fabrication, and electromagnetic performance (mode conversion, impedance matching, and antenna performance) are discussed, including the use of metallic cantilever perturbations placed along the troughguide sidewalls that are designed to provide improved impedance matching when steering the beam from the backward quadrant through broadside, towards the forward quadrant. Impedance matching techniques such as use of circular holes at the edge of each actuated cantilever are used to reduce power reflections and provide a low voltage standing wave ratio (VSWR) along the S-band. Finite element simulations will provide a demonstration of the airflow and turbulence characteristics throughout the entire structure, where the metallic cantilevers are used to manipulate the flow of air, to distribute it across the surfaces of the structure better and improve its potential for sensing operations.

Description

Citation