Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The STAPL Parallel Container Framework

    Thumbnail
    Date
    2012-02-14
    Author
    Tanase, Ilie Gabriel
    Metadata
    Show full item record
    Abstract
    The Standard Template Adaptive Parallel Library (STAPL) is a parallel programming infrastructure that extends C with support for parallelism. STAPL provides a run-time system, a collection of distributed data structures (pContainers) and parallel algorithms (pAlgorithms), and a generic methodology for extending them to provide customized functionality. Parallel containers are data structures addressing issues related to data partitioning, distribution, communication, synchronization, load balancing, and thread safety. This dissertation presents the STAPL Parallel Container Framework (PCF), which is designed to facilitate the development of generic parallel containers. We introduce a set of concepts and a methodology for assembling a pContainer from existing sequential or parallel containers without requiring the programmer to deal with concurrency or data distribution issues. The STAPL PCF provides a large number of basic data parallel structures (e.g., pArray, pList, pVector, pMatrix, pGraph, pMap, pSet). The STAPL PCF is distinguished from existing work by offering a class hierarchy and a composition mechanism which allows users to extend and customize the current container base for improved application expressivity and performance. We evaluate the performance of the STAPL pContainers on various parallel machines including a massively parallel CRAY XT4 system and an IBM P5-575 cluster. We show that the pContainer methods, generic pAlgorithms, and different applications, all provide good scalability on more than 10^4 processors.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8753
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV