Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive

Date

2011-02-22

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery mechanisms under SAGD process with different injection fluids, including steam, solvent or steam with solvent. 2D simulation studies based on typical Athabasca reservoir properties have been performed. Results show that a successful solvent co-injection design can utilize the advantages of solvent and steam. There is an optimal solvent type and concentration ratio range for a particular reservoir and operating condition. Long, continuous shale barriers located vertically above or near the wellbore delay production performance significantly. Co-injecting a multi-component solvent can flush out the oil in different areas with different drainage mechanisms from vaporized and liquid components. Placing an additional injector at the top of the reservoir results only in marginal improvement. The pure high-temperature diluent injection appears feasible, although further technical and economic evaluation of the process is required. A 2D scaled physical model was fabricated that represented in cross-section a half symmetry element of a typical SAGD drainage volume in Athabasca. The experimental results show co-injecting a solvent mixture of C7 and xylene with steam gives better production performance than the injection of pure steam or steam with C7 at the study condition. Compared to pure steam injection runs ( Run 0 and 1), coinjecting C7 (Run 2) with steam increases the ultimate recovery factor of oil inside the cell from 25 percent to 29 percent and decreases the ultimate CSOR from 2.2 to 1.9 and the ultimate CEOR from 4892 J/cm 3 to 4326 J/cm 3 ; coinjecting C7 and Xylene (Run 3) increases the ultimate recovery factor of oil from 25 percent to 34 percent, and decreases the ultimate CSOR 2.2 to 1.6 and the ultimate CEOR from 4892 J/cm 3 to 3629 J/cm 3 . Analyses of the experimental results indicate that partial pressure and the near wellbore flow play important roles in production performance. In conclusion, a successful solvent injection design can effectively improve the production performance of SAGD. Further research on evaluating the performance of various hydrocarbon types as steam additives is desirable and recommended.

Description

Citation