Proppant Fracture Conductivity with High Proppant Loading and High Closure Stress

Date

2011-08-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ultra-deepwater reservoirs are important unconventional reservoirs that hold the potential to produce billions of barrels of hydrocarbons, but also present major challenges. This type of reservoir is usually high pressure and high temperature (HPHT) and has a relatively high permeability. Hydraulic fracturing high permeability reservoirs are different from the hydraulic fracturing technology used in low permeability formations. The main purpose of hydraulic fracturing in low permeability reservoirs is to create a long, highly conductive path, whereas in high permeability formations hydraulic fracturing is used predominantly to bypass near wellbore formation damage, control sand production and reduce near wellbore pressure drop. Hydraulically fracturing these types of wells requires short fractures packed with high proppant concentrations. In addition, fracturing in high permeability reservoirs aims at achieving enough fracture length to increase productivity, especially when the viscosity of the reservoir fluid is high. In order to pump such a job and ensure long term productivity from the fracture, understanding the behavior of the fracture fluid and proppant is critical. A series of laboratory experiments have been conducted to study conductivity and fracture width with high proppant loading, high temperature and high pressure. Proppant was manually placed in the fracture and fracture fluid was pumped through the pack. Conductivity was measured by pumping oil to simulate reservoir conditions. Proppant performance and fracture fluids, which carry the proppant into the fracture, and their subsequent clean-up during production, were studied. High strength proppant is ideal for deep fracture stimulations and in this study different proppant loadings at different stresses were tested to see the impact of crushing and fracture width reduction on fracture conductivity. The preliminary test results indicated that oil at reservoir conditions improves clean-up of fracture fluid left in the proppant pack compared with using water at ambient temperature. Increasing the proppant concentration in the fracture showed higher conductivity values in some cases even at high closure stress. The increase in effective closure stress with high temperature resulted in a significant loss in conductivity. Additionally, the fracture width decreased with time and increased effective closure stress. Tests were also run to study the effect of cyclic loading which is expected to further decrease conductivity.

Description

Citation