Show simple item record

dc.contributorMuliana, Anastasia
dc.creatorLi, Kuo-An
dc.date.accessioned2011-02-22T22:23:55Z
dc.date.accessioned2011-02-22T23:46:34Z
dc.date.accessioned2017-04-07T19:57:54Z
dc.date.available2011-02-22T22:23:55Z
dc.date.available2011-02-22T23:46:34Z
dc.date.available2017-04-07T19:57:54Z
dc.date.created2009-12
dc.date.issued2011-02-22
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7437
dc.description.abstractThe existence of polymer constituent in piezoelectric fiber composites (PFCs) could lead to significant viscoelastic behaviors, affecting overall performance of PFCs. High mechanical and electrical stimuli often generate significant amount of heat, increasing temperatures of the PFCs. At elevated temperatures, most materials, especially polymers show pronounced time-dependent behaviors. Predicting time-dependent responses of the PFCs becomes important to improve reliability in using PFCs. We study overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and MFCs consist of unidirectional PZT fibers dispersed in epoxy placed between two interdigitated electrode and kapton layers. The AFCs have a circular fiber cross-section while the MFCs have a square fiber cross-section. Finite element (FE) models of representative volume elements (RVEs) of active PFCs, having square and circular fiber cross-sections, are generated for composites with 20, 40, and 60 percent fiber contents. Two FE micromechanical models having one fiber embedded in epoxy matrix and five fibers placed in epoxy matrix are considered. A continuum 3D piezoelectric element in ABAQUS FE is used. A general time-integral function is applied for the mechanical, electrical, and piezoelectric properties in order to incorporate the time-dependent effect and histories of loadings. The effective properties of PZT-5A/epoxy and PZT-7A/LaRC-SI piezocomposites determined from the FE micromechanical models are compared to available experimental data and analytical solutions in the literature. Furthermore, the effect of viscoelastic behaviors of the LaRC-SI matrix at an elevated temperature on the overall electro-mechanical and piezoelectric constants are examined.
dc.language.isoen_US
dc.subjectPFC
dc.subjectAFC
dc.subjectMFC
dc.subjectpiezoelectric composite
dc.subjectPZT-7A
dc.subjectPZT-5A
dc.subjectepoxy
dc.subjectLaRC-SI
dc.subjectpolyimide
dc.subjectfinite element
dc.subjectviscoelastic
dc.subjecttime-dependent
dc.subjectcreep
dc.subjectrelaxation
dc.titleModeling Time-dependent Responses of Piezoelectric Fiber Composite
dc.typeBook
dc.typeThesis


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record