Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of Synthesis Condition and Annealing on the Sensitivity and Stability of Gas Sensors Made of Zn-Doped y-Fe2O3 Particles

    Thumbnail
    Date
    2010-10-12
    Author
    Kim, Taeyang
    Metadata
    Show full item record
    Abstract
    In this study, the effect of synthesis conditions and annealing process on the sensitivity and stability of gas sensors made of flame-synthesized Zn-doped ?-Fe2O3 particles was investigated. Zn-doped ?-Fe2O3 particles were synthesized by flame spray pyrolysis using either H2/Air or H2/O2 coflow diffusion flames. The particles were then annealed at 325~350?C in a tube furnace under air atmosphere. Both as-synthesized and annealed particles were used as gas sensing materials to construct gas sensors. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller surface area measurement (BET), Williamson and Hall (WH) method were employed to characterize the particles. Gas sensors were fabricated by applying the as-synthesized and annealed particles on interdigitated electrodes. The response of the gas sensor to acetone vapor, H2 in dry synthetic air was measured before and after three days of aging. High-temperature flame (H2/O2) generated nanometer-sized particles; lower temperature flame (H2/Air) generated micrometer-sized particles. Fe2O3 particles doped with 15% Zn showed the highest sensitivity. The sensors made from as-synthesized particles showed a gas sensing sensitivity that was 20 times higher than the literature value. The sensors made of microparticles lost their sensing ability after three days of aging, but sensors made of nanoparticles did not show significant change after aging. Sensors made of annealed particles (either micro or nano) did not have significant gas sensing ability, but annealing process improved the stability of gas sensors. Analysis using the WH method showed that the microstrains decreased significantly in both H2/O2 and H2/Air flame particles after annealing. The results showed that sensors made of nanoparticles have higher gas sensing signal, and more resistant toward aging than sensors made of microparticles. In addition, annealing process affected on the stability favorably due to reduction of structural defects.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-852
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV