Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional Properties and Utilization of High pH Beef

    Thumbnail
    Date
    2010-10-12
    Author
    Garcia, Lyda G.
    Metadata
    Show full item record
    Abstract
    Two Texas fed beef and cow/bull packing plants were surveyed for high pH beef carcasses as well as the evaluation of functional properties of high pH beef in whole muscle beef jerky, frankfurters, and snack stick production. An estimated 42% of cow carcasses were of 6.0 muscle pH or greater as well as exhibiting darker, less red colored lean. Jerky high in pH from cow inside rounds resulted in the greatest percent moisture and least percent protein compared to other treatments. High pH cooked jerky were higher in (P < 0.05) pH and water activity and lower in percent fat and shear force values. In cooked jerky slices, fed-high resulted in the highest percent MPR and cook yield, but was the most tender. In contrast, fed-normal resulted in the least water activity, MPR and toughest jerky slices. In frankfurter production, emulsion stability and hydration values was highest for C (1.98mL) followed by 100H (3.37mL) that decreased as percent high pH decreased. As storage day increased, frankfurter pH decreased, especially by day 56 (5.67) where LAB and APC counts had reached a log of 6.0 indicative of spoilage by day 28 and became lighter and less red in color with minimal lipid oxidation. 100H was harder and less cohesive with trained panelists reported containing at least 50% high pH meat was harder. The pH and internal color of cooked snack sticks significantly increased and became lighter and redder as percent high pH meat increased. Even though water activity compared to a whole muscle dry product or an emulsified, water added product ranged from 0.85 to 0.86 (P > 0.05), minimal (P greater than 0.05) lipid oxidation occurred. 100N resulted in the least percentage of fat but 3% more (P less than 0.05) protein and highest shear force values. Overall, beef raw materials high in pH may be better suited in a semi-dry fermented product.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7185
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV