Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Analysis of Fully Joint Diversity Combining, Adaptive Modulation, and Power Control Schemes

    Thumbnail
    Date
    2010-01-14
    Author
    Bouida, Zied
    Metadata
    Show full item record
    Abstract
    Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error-rate performance. Selected numerical examples show that these schemes considerably increase the spectral efficiency of the existing JAMDC schemes with a slight increase in the average number of combined paths for the low signal to noise ratio range while maintaining compliance with the BER performance and a low radiated power resulting in a substantial decrease in interference to co-existing systems/users.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7005
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV