Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extraction of Spin Polarization of Bulk and Measurement of Transport Properties of Thin GdxSi1-x Near the Metal-Insulator Transition

    Thumbnail
    Date
    2010-07-14
    Author
    Srivastava, Raj Vibhuti A.
    Metadata
    Show full item record
    Abstract
    Since the early 1960s, Abrikosov-Gorkov theory has been used to describe superconductors with paramagnetic impurities. Interestingly, the density of states resulting from the theoretical framework has to date only been known approximately, as a numeric solution of a complex polynomial. An analytical solution to the theory was discovered and applied to extract the spin polarization from the tunneling conductance of superconducting aluminium with 3-dimensional (3-D) amorphous (a-) gadoliniumxsilicon1-x (GdxSi1-x) as a counter electrode (Al/Al2O3/a-GdxSi1-x planar tunnel junction measured at T = 25 mK and H less than or equal to 3.0 T) in the quantum critical regime (QCR). The analytical solution is valid in the whole regime of Abrikosov-Gorkov theory independent of the presence of an energy gap. Applying the spin polarized Abrikosov-Gorkov theory to describe aluminium gives a larger spin polarization in GdxSi1-x than the spin polarized Bardeen-Cooper-Schrieffer (BCS) theory. The purpose of this study is to extract polarization at various applied magnetic fields, but no specific relationship between the two could be determined. Results obtained shows a transition from a superconductor with a gap to a gapless superconductor in varying external magnetic fields was observed. To improve understanding of GdxSi1-x near the metal-insulator transition (MIT) and compare it with prior work, the initial experimental attempts to investigate the transport property of GdxSi1-x near the MIT in the 2-dimensional limit are presented. A low temperature ultra high vacuum quench condensation system was used to make thin films of GdxSi1-x and in-situ measurements were performed. The transport properties for different values of x and thicknesses were measured for T = 4.2 K to ~10 K. In addition to other possible causes, the uncertainty in the electron impact emission spectroscopy (EIES) appeared to be a major reason behind the observed error in x when gadolinium and silicon are co-evaporated. The problems faced during the co-evaporation are also discussed.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-792
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV